Positive solutions of quasilinear Schrödinger equations with critical growth
نویسندگان
چکیده
منابع مشابه
Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کاملUniqueness of Positive Radial Solutions to Singular Critical Growth Quasilinear Elliptic Equations
In this paper, we prove that there exists at most one positive radial weak solution to the following quasilinear elliptic equation with singular critical growth
متن کاملQuasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملPositive decreasing solutions of quasilinear dynamic equations
We consider a quasilinear dynamic equation reducing to a half-linear equation, an Emden–Fowler equation or a Sturm–Liouville equation under some conditions. Any nontrivial solution of the quasilinear dynamic equation is eventually monotone. In other words, it can be either positive decreasing (negative increasing) or positive increasing (negative decreasing). In particular, we investigate the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2015
ISSN: 0893-9659
DOI: 10.1016/j.aml.2015.01.005